CPU Benchmark Performance: Science - The AMD Ryzen 9 7900, Ryzen 7 7700, and Ryzen 5 7600 Review: Ze

Posted by Jenniffer Sheldon on Monday, July 1, 2024

CPU Benchmark Performance: Science

Our Science section covers all the tests that typically resemble more scientific-based workloads and instruction sets. For our 2023 CPU suite, we've also added SciMark 2.0 which measures numerical kernels and various computational routines found in numeric coding.

We are using DDR5 memory on the 12th and 13th Gen Core parts, as well as the Ryzen 7000 series, at the following settings:

  • DDR5-5600B CL46 - Intel 13th Gen
  • DDR5-5200 CL44 - Ryzen 7000
  • DDR5-4800 (B) CL40 - Intel 12th Gen

All other CPUs such as Ryzen 5000 and 3000 were tested at the relevant JEDEC settings as per the processor's individual memory support with DDR4.

Science

(2-1) 3D Particle Movement v2.1 (non-AVX)

(2-2) 3D Particle Movement v2.1 (Peak AVX)

(2-3) yCruncher 0.78.9506 ST (250m Pi)

(2-4) yCruncher 0.78.9506 MT (2.5b Pi)

(2-4b) yCruncher 0.78.9506 MT (250m Pi)

(2-5) SciMark 2.0: Composite

(2-5b) SciMark 2.0: Monte Carlo

(2-5c) SciMark 2.0: Fast Fourier Transform

(2-5d) SciMark 2.0: Sparse Matrix Multiply

(2-5e) SciMark 2.0: Dense LU Matrix Factorization

(2-5f) SciMark 2.0: Jacobi Successive Over-Relaxation

(2-6) Primesieve 1.9.0: High Core Count

Given that all of AMD's Ryzen 7000 series line-up includes AVX-512 support, it stretches above the non-AVX-512 enabled chips in our 3DPM v2.1 AVX benchmark. Looking at the general consensus in our other tests where multi-threaded performance is essential, all three 65 W Ryzen 7000 SKUs perform well considering their lower power limits, but it does underscore why AMD (and Intel) have higher TDP chips as well.

ncG1vNJzZmivp6x7orrAp5utnZOde6S7zGiqoaenZH55gphsZq2glWKurrCMq7CznZ5ihm6DmGlnZqqpr7KveZZmbnBoYGKur7CMq7CznZ5igm6BjHBtaWhdp7K3tcSwZKuxqpq7boOPaWdmmaRig3Z51maxnqZdaXqmssWimqKdnpjGcH8%3D